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PREFACE

The work described in this report was performed bv the Earth and Space
Sciences Division of the Jet Propulsion Laboratory.

This report is Chapter 3 of Application and Fundamentals of Turbulence,

to be published by Plenum Press of London and New York. The report was pre-
sented as a Short Course Lecture at the University of Tennessee Space Institute,

Tullahoma, Te.inessee, on Januarv 11, 1977.
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ABSTRACT

A review is given ot the application of linear stabilitv theory to
the problem of boundarv-layer transition in incompressible 1w. The thecrv
is put into a form suitable for three-dimensional boundary lavers; both the
temporal and spatial theories are examined; and a generalized Gaster rela-
tion for three-dimensional boundary lavers is derived. Numerical examples
include the stability characteristics of Fallner-Skan boundary layers, the
accuracy of the two-dimensional Gaster relation ror these boundary layers,
and the magnitude and direction of the group velocity for oblique waves in
the Blasius boundary laver, A review is given of the available experiments
which bear on the validity of stability theory and its relation to tramsition.
The final section is devoted to the application of stability theorv to tran-
sition prediction. Lienmann's method, the en method, and the modified nn
method, where n is related to the external disturbance level, are all dis-
cussed. A different tvpe of method, called the amplitude method, is described
in which the wide-band disturbance amplitude in the boundarv laver is esti-
mated from stability theory and an interaction relation for the initial ampli-
tude density of the most unstable frequency. his mcitiea 1s applied to the
effect of freestream turbulence on the transition of Falkner-Skan boundary

layers.
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I. HISTORICAL BACKGROUND

The earliest explanation for the appearance of turbulence was that the
laminar flow becomes unstable, and the linear stability theory was first
developed to explore this possibility. A series of papers by Rayleigh(l)
provided many notable results concerning the instability of inviscid flows,
such as inflectional instabilitry, Sut little progress was made toward the
original goal. Viscosity was commonly thought to act only to stabilize the
flow, but in 1921 Prandtl(z) showed that viscosity can also be destabilizing.
It was this discovery that finally provided a mechanism for the instability
of boundary layers in zero and favorable pressure gradients which are stable
to purely inviscid disturbances. However, it was not until some years later

that Tollmien(3)

worked out a complete theory of boundary-layer stability,

and for the first time computed a meaningful critical Reynolds number (Recr)’
i.e. the lowest Reynolds number at which instability appears. Any expectation
that instability and transition to turbulence are synonymous in boundary

layers was dashed by the low value of ReCr for the flat-plate boundary layer.

Tollmien's calculation gave a value of 420 for the critical displacement-

* % *
thickness Reynolds number, which is equivalent to Recr = le /v =6x 104.
Even in the high turbulence level wind tunnels of that time, transition
was found between Ret = 3.5 x 105 and 1 x 106.

In what can be considered the earliest application of linear stability
theory to transition prediction, Schlichting(A) calculated the amplitude
ratio A/A0 of the most amplified frequency as a function of Reynolds number
for a flat-pla“e boundary layer, and found that this quantity had values between

five and nine at the observed transition Reynolds numbers. Outside of

Germany, the stability theory rcceived little acceptance because of failure to
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observe the predicted waves, mathematical difficulties, and also the feeling
that a linear theory could not have much to say about the origin of turbulence
which is inherently non-linear. The experiment of Schubauer and Skramstad(S)
completely revised this opinion, and unequivocally demonstrated the existence
of instability waves in a boundary layer, their connection with transition, and
the quantitative description of their behavior by the theory of Tollmien and
Schlichting. This experiment made an enormous impact at the time of its
publication, and by its very completeness seemed to answer most questions
concerning the linear theory. To a large extent, subsequent experimental
work on transition went in other directinns, and the possibility that linear .'
theory can be quantitatively related to transition has not received a decisive
experimental test. On the other hand, it is generally accepted that fl.ow
parameters such as pressure gradient, suction and heat transfer qualitatively
affect transition in the manner predicted by stability theory, and in
particular that a flow predicted to be stable by the theory should remain
laminar. This expuctation has often veen deceived. A good introduction
into the complexity of transition and the difficulties involved in trying
to arrive at a rational approach to its prediction can be found in a report
by Morkovin.(6)
Investigators in Germany applied the stno?litv theory to boundary layers
with pressure gradients and suction, and this work is summarized in Schlichting's

) ' (8)

book. We may make particular mention of Pretsch work, as he provided

the only large body of numerical results for exact boundary-layer solutionms
before the advent of the computer age by calculating the stability characteris-
tics of the Falkner-Skan family of velocity profiles. The mather.atics of the

9)

asymptotic theory were put on a firmer foundation by Lin, and this work has
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been continued by Reid.(lo)

When in about 1960 the digital computer reached
a stage of development permitting the direct numerical solution of the primary

differential equations, the linear theory was ext:nded to many mnre boundary-
11
(11),.

13));

layer flows: three-dimensional boundary layers (Brown free-convection

(12)

boundary layers (Kurtz and Crandall and Nachtsheié

(14)

comprassible

boundary layers (Brown and Mack(ls)); boundary layers on compliant walls

(16));

(Landahl and Kaplan a recomputation of the Falkner-Skan flows (Wazzan,

Okamura, and Smith(17)); a quasi-steady calculation of unsteady boundary layers

[
(Obremski, Morkovin, and Landahl(le)); and heated-wall water boundary layers

(Wazzan, Okamura, and Smith(lg)).

It will be the main purpose of this chapt r to explain in detail the
use of linear stability theory as a means of transition prediction. Enough
of the theory is presented in Section II to make it clear how the essential
quantity, the amplitude ratio A/Ao, is obtained. The use of temporal and
spatial amplification theories is discussed, and a numerical procedure presented
which allows eigenvalues to be calculated to arbitrarily high Reynolds numbers.
A few numerical examples are given, and in Section III the available experiments
bearing on stability theory are examined. Finally, in Section IV the applica-
tion of linear theory to transition prediction is taken up, and the e9.
modified 69 and amplitude methods are discussed and applied to the effect of
freestream turbulence on transition. It must be emphasized that the subject
matter is restricted to incompressible boundary layers along an impermeable
surface of zero curvature in the absence of hody forces. Gortler instability,
free shear flows, and stratified, rotating and compressible flows, are all
excluded.

Before proceeding further, it i{s well to mention some general references.

(20) en 2D

These are review articles on stability theory bv Schlichting Sh
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(24) (25)

Stuart(zz) and Reid(23); and books by Lin and Betchov and Criminale.

(N

Schlichting's book on boundary-layer theory contains two chapters on stability

(26)

and transition, and Monin and Yaglom's book on turbul ‘nce contains a single

(27)

on viscous

(29)

lengthy chapter on the same subject, as does the book by White

(28)

flcw theory. Reviews of transition have been given by Dryden, Tani,

(6) (30)

Morkovin and Reshotko. An extensive discussion of both stability theory

and transition, not all at high speeds in spite of the title, may be found in

the Morkovin-Mack recorded lectures.(31)

II. STABILITY THEORY
A. Formulation of Eigenvalue Problem

1. Derivation of Equations

The stability theory starts with the time dependcnt Navier-Stokes
equations, not the boundary-layer equations. We will restrict ourselves to
the flow of a single incompressible fluid on a surface of negligible curvature.
This simplification eliminates many possible sources of instability, but
preserves the two®shich are essential to an understanding of the subject:
inflectional and viscous instability. The Navier-Stokes equations for a

viscous incompressible fluid in Cartesian coordinates are

%%+u%§+v%+wg—;=-%%§+vvzu. (1)
%%-+ u %ﬁ + v %§-+ W %% = - %-%§-+ Wy, (2)
%% +u %& +v %% + w %§-= - %'gz + vvzw, (3)
%% + %% + %% = 0. (4)
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The x-axis is in the direction of the freestream velocity, the y axis is
normal to the surface, and the z axis is normal to‘the x 1md y axes. The
velocities u, v, w are in the x, y, 2z directions, respectively. The density
is p, the pressure p, and the kinematic viscosity coefficient v = u/p. The
first three equations are the x, z, z momentum equations; the fourth equation
iz the equation of continuity.

All flow quantities are divided into a steady mean-flow term and an

unsteady fluctuation term. A typical term is

q(x,y,z,t) = Q(x,y,2) + q'(x,y,z,t). (5)

The mean-flow terms satisfy the boundary--layer equations. When expressions
similar to (5) are substituted into (1)-(4) for all flow variables. *+ e mean-
flow terms dropped which are negligible by the boundary-layer eq.itions, the
mean boundary-layer equations subtracted out, and the nonlinear terms neglected,
a much simplified, but still too cor,.licated, system of equatidlg results. The

additional assumpticn of locally parall-" flow,
U-= U(Y)a W= W(Y)9 V= 09 (6)
reduces the equations sufficiently so that upon the introduction of a sinus-idal

disturbance they become ordinary differential equations.

The parallel-flow equations ars, in dimensionless form,

ou' ou’ u' y dU _ 1ep' 1 2"
e U Ve Y Gy St R VU (7)
v . e O - 1 32' 1.2 !
3t + J 5*- bW . - " ay + R Vv, (8)
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' ' w' o, W 19p', 12"

st TUgx ¥WR Y dy ~ p a3z tr7V (9
v ]

Ju v °w = 0. (10)

ax Iy 3z

From now until Section IV dimensional quantities will be denoted by asterisks.

* *
1° the length scale is L (left
2

* %
unspecified for the oresent), and the pressure scale oU1 . The Reynolds

The velocity scale is the freestream velocity U
number is
* & %
R=U L/v. (11)

These equations, which are the basis of almost all stability investigations,
are exact for the flow in a channel or for Couette flow, but are only an
approximation for boundary-layer flows. If the multiple scale or two-timing

method first applied to this problem by Bouthier(32)

and later by Saric and
Nayfeh(33)is used, the above equations appear as the zeroth approximation.
The next approximation takes the growth of the boundary layer into account.
Although this method may be desirable for refined calculations, it is not
needed for an el-mentary presentation of the subject and will not be pursued

here.

2. Introduction of Sinusoidal Disturbances

The final form of the differential equations, where the coefficients
are functions only of y, and x, z, t appear only as derivatives, suggests

the following type of disturbance:

(u',v',w',p') = (f,4,h,7) exp [ i(ax + Bz - wt)]. 12)
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Here, £(y), ¢(y), h(y), w(y) are the complex amplitude functions of the

disturbance flow variables u', v', w', p'; a and B are the dimensionless wave

* % *, % * %
numbers 27L /lx and 27L /Az, where A, and Az are the wavelengths in the x and

x ® %
2 directions, respectively, and w is the dimemsionless frequency w L /Ul. For

the moment, a, B, w may be either real or complex.

When (12) is substituted into (7)-(10), the following equations for

the amplitude function are obtained:

\ ) . 2 2
1(aU+8W—m)f+U¢=-ia1l+-§[f - (a° + 8%) f£],
1(aU + @) ¢ = = 7' + 2 [¢" - (o + 8D)al,

, ) 2 2
i(uU+BW—m)h+W¢=-iB1r+E[h - (@“ + 8%) n},
i(af + Bh) + ¢' = 0.

The primes now refer to differentiation with respect to y. The boundary

conditions are that the no-slip condition applies at the wall,
£(0) = 0, ¢(0) = 0, h(0) = O,
and that the disturbances go to zero (or are at least bounded) as y » =,
f(y) >0, ¢(y) >0, h(y) >0 as y + =,

Since all of the boundary conditions are homogeneous, it can be expected

(13)

(14)

(15)

(16)

(17)

(18)

that

solutions to (13)-(16) will exist only for particular combinations of R, a, B8,
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and «. Consequently, we have an eigenvalue problem, and the primary task is to

evaluate the eigenvalue relation

g(m. 8, w, R) = 0 (19)

for one parameter in terms of the others.

3. Orr-Sommerfeld Equation

If (13) and (15) are combined to form af + 8h, this combination can be
eliminated by (16), and, after differentiation, 7' can be eliminated by (14)

to give

o1V - 20e® + 8Y) o + (@ + 8%P e

= iR{(aU + fW-w) [o" - (a2 + 82) Y|

- (aU" + BW™) ¢}. (20)
When W = 0, this equation reduces to the equation obtained by Squire,(34) and
when in addition 8 = 0, to
"
¢iv _ 202¢ + a4¢
= iR [ (alU-w) ($"-a24) - aU" o] . (21)

This is the Orr-Sommerfeld equation and is the basis for most of the work done
in incomprersible stability theory.
The Orr-Sommerfeld equation is a fourth-order equation and applies to a

two~-dimensional boundary layer. However, we can observe that (20), which is
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the equation for a three-dimensional disturbance in a three-dimensional boundary
layer, is also a fourth-order equation. This fact can be exploited to relate
more general cases to (21). We will illustrate this possibility with Squire's

equation. With W = 0, the transformation

o2 + 82 =3, Ra = Ra, e = o (22)
teduces (20) to
o1V - 232" ot = 1R [ (GU-2) (4"-20)
- aU™], (23)

which is identical to (21), but in the transformed variables. Since U is
unchanged, it is evident that if a and B are real, a three-dimensional
stability problem at Reynolds number R has been reduced to a two-dimensional
problem at the lower Reynolds number R. This is the celebrated Squire

theorem which states that in a two-dimensional boundary layer with real wave
numbers, instability appears first for a two-dimensional dfsturbance. Further-
more, if w= w(x, R) has been determined for a given U(y), then w = w(x, B, R)
is immediately known from (22).

However, if o and @ are complex or the boundary layer is three dimensional,
the ut’'lity of the above transformation is lost. In the first instance, R is
complex, and in the second the boundary-layer profile is not invariant under
the transformation. In both of these cases, there is little point in proceeding

beyond (20). The important conclusion is that in stability oroblems goverred by
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(7)-(10), the ditermination of the eigenvalues only requires the solution of
a fourth-order equation.

4. Systum of First-Order Equations

Since thece are numerous stability problems that cannot be reduced to
a fourth-oxrdec :.ystem, a more flexible approach is to abandon the Orr-Sommerfeld
equation altog:ther and work in terms of a system of first-order equationé. This
approach can he illustrated with (7)-(10) although it doesn't reveal its full
advantage until the eigenvalue problem is of higher than fourth order.

Let
of + gh = af, oh - Bf = ah . (24)
By adding and subtracting (7) and (9), the following replacement equations can
be formed for these two linear combinations:

iU + 3W-y) af + (aU' + 8W') ¢

= - iw(az +8Y + e - (az + 8%) afl ’ (25)

20|

i(aU + BW-w) ah + (aW' - BU') ¢
- %-[&ﬁ -+ 8D an) . (26)
With,

Z, =af, Z, = af', Z3 = ¢, Z& = 7,

Z. =ah, Z, = oh', 27
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the four equations (25), (8), (26), (10) can be written

zlssz2 . (28)
' 2 2
z, = [a® + B° + fR(aU + BW-w)] z1
\ .. 2, .2
+ (aU +Bu,.\z3+i(a +a)nz4. (29)
1]
z3=-1 zl, (30)
2 2
R Y a” +8°
za R z1 - [1(aU + BW-w) + X ] z3, (31)
[ ]
z5 = 26, (32)
' 1} 1 ]
26 = (aW'-BU') R z3
2 2
+ (o + £° + 1R(aU + gW-w)] zg - (33)

The fact tha” the first four of tuese equations do not coantain ZS or 26

confirms that the eigenvalues ran be obtained from a fourth-order system even
though we are realily dealing nere with a sixth-order system. It is only the
determination of all of the eigenfunctions that requires the solution of the
full sixth-order system. This formulation is applicable when a and 8 are
complex and to three-dimensional boundary layers. The quantity a has been
introduced only to connect with other formulations, but has not been assigned a
meaning. When a and B are real, a is obviously the wave number in the direction

of wave propagation.

-11-
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Ir. the freestream, (28)-(33) have constant coefficients and thus solutions

c{ the form
Z(i)(y) - A(i) exp (A;y) . (34)

“he characteristic values occur in pairs, and are easily determined to be

- 2. .2.1/2
A= F e . (33)
Ayq = ¥ (a2 + 82 4+ 5r (aU, + eul-u)l”2 , (36)
XS.G = 13’6 » (37)

where U1 and Hl are the freestream values of U(y) and W(y). Only the upper

sign satisfies the boundary conditions at y » =. The characteristic functions

for )\, are

1

A(}) - - 12 + 82, (38)

A(;) = i(x2 + 8% , (39)
(1 _

A3-1, (40)

A(:) = i(aU1 + Bwl-w)/(az + 82)1/2 , (41)
a . 1 _ .

A% =0, At 0. (42)

-12-
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For real o, £ and v this solution is the linearized potential flow over a wavy
wall moving in the airection of the wave number vector with velocity m/(u2 + 82 1/2.
It can be called the inviscid solution, although this interpretation is valid

only in the freestream. The characteristic functions for 13 are

A(i) = - 1la? + 8%+ 1R(oU, + awl-m)]” 2, (43)
) _
NE (45)

3 _ 3 _ (3 _
A 4 0, A 5 0, A 0

6 . (46)

This solution represents a viscous wave and can be called the viscous solutiom.

The third solution is another viscous solution, and is
) . (5) _ () _ (5 _
A 1 0, A 2 0, A 3 0, A 4 o , (47)

(5) _
AT 1, (48)

A(z) 2 - [az + 82 + 1R(o.U1 + BWl-m)]ll2

(49)
These three iinearly independent solutions are the key to the numerical method
of obtaining eigenvalues as they provide the initial conditions of the numerical

integration.
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B. Temporal and Spatial Theory

If a, B and w are all real, the disturbance propagates through the
parallel mean flow with constant rms amplitude. If a and B are real, and w
is complex, the amplitude will change with time; if a and 8 are complex,
and w is real, the amplitude will change with x and z. The former case is
referred to as the temporal amplification theory, the latter as the spatial
amplification theory. If all three quantities are complex, the disturbance
will grow in both space and time. The original, and for many years the only,
form of the theory was the temporal theory. However, in a steady mean flow
the amplitude at a fixed point is independent of time and it changes only
with distance. The spatial theory gives this amplitude change in a more
direct manner than does the temporal theory.

1. Tempotral Amplification Theory

With w = 0 + imi and a and B real, the disturbance can be written
q'(x,y,2,t) = q(y) exp (wit) exp [1(ax + Bz - mrt)] . (50)

The magnitude of the wave number vector is
2,1/2

Cas @+ . (51)

and the angle between the direction of @ and the x axis is
b = tan ! (8/0) (52)

The phase velocity, or the velocity with which the crests move normal to

themselves, is

-14-
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c, = mt/& . (53)

ph
1f A representr the magnitude of q' it some particular y, say the y for which
|q'| 1s a maximum, then it foilows from (50) that

(1/a)(dA/dt) = w (54)

1 -
We can identify w, as the temporal amplification rate. Obviously A could have
been chosen at any y, and (54) would be the same. It is this property that
enables us to talk ebout the "amplitude” of an instability wave in the same
manner as the amplitude of a water wave even though this amplitude is a function

of y. We may distinguish three possible cases:

w; < 0 damped disturbances,
w; = 0 neutral disturbances, (55)
Wy >0 amplified disturbances.

The complex frequency may be written

W= oc = or.(cr + 1 ci) . (56)

The real part of ¢ is equal to the phase velocity cph’ and acy is the temporal
amplification rate. The quantity ¢ appears frequently in the literature of

stability theory. However, it cannot be used in the spatial theory, and since
wave theory usually employs a and w, with the phase velocity bejing introduced

as needed, we will adopt the same procedure.

-]5-
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2. Spatial Amplification Theory

In the spatial theory, w is real and the wave numbers in the x and z

directions are complex. With
@e=o. +1ia;,, B= B, +1 Bi . (57)
we can write the disturbance in the form

q' (x,y,2,t) = q(y) exp [’(“1x + siz)] exp li(arx +8.2z-w)l . (58)

By analogy with the temporal theory, we may define a real wave number by

~ 2 2,1/2
a. = lar + Br) . (59)

The angle between the direction of &r and the x axis is given by
¥ = l:an-1 (B _/a.) (60)
r' '
and the phase velocity is

c, = u:/ur (61)

ph
At this point, it is tempting to form a complex wave number a by (51)
with the real part given by (59) and the imaginary part by a similar equation

in terms of o, and 81. However, this procedure is valid only when

i

Bi/m1 = Br/"r R (62)

-16-
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and it is not possible to make this assumption and have the spatial theory
produce reasonable results. Instead it is necessary to separate the wave
amplification from its orientation and introduce the new quantity

2 2)1/2

which makes an angle
V= t:an-1 (8,/a,) (64)
i1

with the x axis. If x is the coordinate in the direction of &r and x is the

coordinate in the direction of a,, we can rewrite (58) as
q' (x,y,2,t) = q(y) exp (- a,;x) exp [1(3 % - wt)] . (65)
It follows that the spatial amplification rate is

(1/a) (dA/dx) = - o (66)

g
To be more precise, (66) gives the maximum spatial amplification rate for the
particular choice of 5; there are lesser amplification rates in other
directions, and of course Ei is itself a function of §. We see that for
three~-dimensional waves the spatial theory has a difficulty not present ir the
temporal theory: 1in addition to the wave orientation angle {, the maximum

amplification direction § must be specified before any calculations can be made.

-17-
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The three cases which correspond to (55) in the temporal theorv aie:

ai >0 damped disturbances,
;i =0 neutral disturbances, (67)
ai <0 amplified disturbances.

3. Relation Between Temporal and Spatial Theories

We now have a temporal theory in which the computation of the eigen-
values is straightforward, but which does not yield a spatial amplification
rate, and a spatial theory which ylelds a spatial amplification rate, but only
after the unknown angle § has been specified. The problem of choosing ¥ is
avoided only in the special case of a two-dimensional disturbance in a two-
dimensional boundary layer where both y and ¥ are zero. The resolution of
both of these dilemmas is provided by introducing the powerful concept of
group velocity.

A laminar boundary layer is a dispersive medium for the propagation of
instability waves. That is, differer: frequencies propagate with different
phase velocities, so that the individual harmonic components in a group of
waves at one time will be dispersed (displaced) from each other at some later
time. An overall quantity, such as the energy density or amplitude, does not
propagate with the phase velocity, but with the group velocitv. Furthermore,
the group velocity can be ccnsidered a property of the individual waves, and
to follow an individual frequency we use the group velocity of that frequency.
Consequently, an observer travelling with the group velocity of a parti -lar
frequency will always see that frequency and its associated amplitude. These

concepts were originally developed for fully dispersed wave trains in a homo-

-18-
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geneous medium with no dissipation (real o, 8, w). However, if the inhomo-
geneity of the r2dium and the wave attenuation or amplificati. are both "small'
over a wavelength, then the concepts still apply. The meaning of '"small" can

be made more precise by a multiple-scale perturbation analysis. These conditions
appear to be satisfied for Tollmien-Schlichting waves in moderately unstable
boundary layers. In addition, an initial arbitrary waveform quickly becomes

the dispersed wave train of the theory because, as shown by Mack(35) for the

(36)

temporal theory and by Corner, Houston and Ross for the spatial theory, all
other modes except th- fundamental (Tollmien-Schlichting) mode are heavily
damped. The basic ideas of linear dispzrsive wave theory for conservative

37

gystems are thoroughly discussed by Whitham. An application to the non-

conservative boundary layer has been made by Landah1(38) {but see also the
(39)).

criticism by Stewartson

The dispersion relation is
w = w{a, B, x, 2) , (68)

and the components of the (vector) , "~up velocity in the x and z directions
are obtained by differentiating (68) with respect to o and 8. When a, B and

w are real,

(2. %) . (69)

This same expression can be used in the temp. ;al theory with w replaced by
wr, and in the spatial theory with ar and Br for  and B. The imaginary
part of the group velocity is neglected (and is zero at the point of maximum

amplification rate),
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From what has already been said, it is clear that the temporal and
spatial amplification rates are related by the group velocity. That is, from
the parallel-flow temforal viewpoint we can form a spatial amplification rate
by following the wave with tle group velocity (now independent of x and 2).

The time derivative is thus transformed into a space derivative by

» (70)

where x must be in the d.rection of Cg* Consequently,

- wy
ai - - 2 g . (71)
le |°
g
and the direction of Ei can be written
¥ = tan ! [ (30_/28)/ (u_t30)] . (72)

The group velocity referred to here is the group velocity of the temporal
theory.
The prcblem of converting a temporal to a spatial amplification rate was

(%)

first encountered by Schiichting" *, who used the two-dimensional versious

of (71) and (69) without comment. The same relation was also used later by
(40) (41)

Lees » but the first mathematical derivation was given by Gaster for

the two-dimensional case. The derivation of Gaster's relation is quite

simple and can easily be generalized to three dimensions. The derivation

starts from the fact that the complex frequency w is an analytic function of

the complex variables a and # at a fixed x an' Therefore, the Cauchy-

Riemann equations
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3mt } 6w1 3wr . ami
’ = A .
aar 3ai aui aur
(73)
amr _ ami 3wr L Bmi
9
BBr asi 681 38r

can be applied. In the two-dimensional case, the left-hand side of the { st
of these equations is the group veiocity. The derivative on the right-hand
side can be approximated by noting that wy decreases from its temporal value

to zero in the spatial theory as a, goes from zero to its value in the spatial
theory. If the amplification rate is small, these variations can be considered

linear, and

. (74)

We see that (74) is the same as the two-dimensional form of (71) with
the important difference that the relation is revealed to be only an approxi-
mation valid for small a, . In the three-dimensionai case, if y is specified
arbitrarfly and the x axis rotated to lie in the § direction, (74) wiil still
apply with ay replaced by ai and Cg by the component of the group velocity
in the E direction. Consequently, when v is chosen in the direction of the

group velocity, (71) immediately follows, but again as an approximation rather

than as an exact expression.

C. Numerical Procedures

1. Tvpes of Methods

Since the early 1960's, the asymptotic theory developed by Tollmien(3)

(4)

and Lin has been largely superseded as a means of producing numerical results

in favor of direct solutions of the governing differential equations on a
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digital computer. The numerical methods employed fall roughly into three

categories: (i) finite difference methods, first employed by Thomas(az) in

his pioneering numerical work of 1953; (2) shooting methods, first employed
(11)

by Browm (a successful low Reynolds number program was operating as early

as 1954); and (3) spectral methods, first used by Gallagher and Hercer(a3)

(44) with

with Chandrasekhar and Reid functions, and later improved by Orszag
the use of Chebyshev polynomials. All of these methods have advantages and
disadvantages which show up in specialized situations, but all are probably
equally able to do the routine eigenvalue computations required in tramsition
prediction calculations. However, it is the shooting methods that have mainly
been applied to this problem and will be described here.

After Brown's initial work, programs were developed by Mack,(és)

(16) (46) (47)

Landahl and Kaplan, Radbill and Van Driest,

(17) (48)

Lee and Reynolds,

Wazzan, Okamura and Smith, and Davey, among others. Most of these

programs solve only the Orr-Sommerfeld equation; exceptions are the

(14) (45) which was also

compressible program of Brown, and the program of Mack
originally developed for compressible flow and only later extended to
incompressible flow. All of the programs except Brown's have the common
feature that the numerical integration proceeds from the freestream to the
wall.

The early applications of chooting methods suffered from the problem of

parasitic error growth. This growth arises be.ause of the presence of a

rapidly growing solution (the local "viscous" solution) which any numerical

roundoff error will follow. The rapidly growing error eventually completely
contaminates the less rapidly growing solution. The essential advance in
coping with this problem, which had previously limited numerical solutions to

(49)

moderate Reynolds number, was made by Kaplan. The Kaplan method "purifies"
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the contaminated solution by filtering out the parasitic error whenever it
becomeg large enough to destroy linear independence.
2. Gram-Schmidt Orthonormalization

An alternative method, first employed by Bellman and Kalaba®") and

applied to the stability problem by Radbill and Van Driest(46)

(17)

and Wazzan,
Okamura and Smith, is that of Gram-Schmidt orthonormalization. This
method has the advantage that it is easier to generalize to higher-order
systems thanx is the Kaplan filtering technique. However, the geometrical
argument often adduced in its support that this procedure preserves linear
independence by keeping the solution vectors orthogonal cannot be correct
because the solution vector space does not have a metric. Instead, the method
works on exactly the same basis as Kaplan filtering: the "small" solution is
replaced by a linear combination of the "small" and "large" solutions which
is itself constrained to be "small."

For the simplest case of a two-dimensional wave in a two-dimensional

3)

boundary layer, there are two solutions, Z(l) and 2 , each consisting of four

3)

the viscous

(3

components. In the freestream, Z(l) is the inviscid and Z

solution. Although this identification is lost in the boundary layer, Z
(1)

continues to grow more rapidly with decreasing y than does 2 . The

(3)

parasitic error will follow Z

(3) (1)

, and when the difference in the magnitudes of

(1)

A and Z exceeds the computer word length, Z

3

independent of Z . Well before this occurs, the Gram-Schmidt orthonormaliza-

~(1)

tion algorithm is applied. The "large" solution Z is normalized component

will no lcnger be

by component to give the new solution

(3 L ;) (I* ()12 7%
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where the asterisk refers to a complex conjugate and {} to a scalar product.

W 4 s

The scalar product of Z is used to form the vector

s(l) - [2(1) - {3(3)* Z(l)} s(3)]/{§(1)* §(l)}1/2 (76)

(1)

to replace Z'~’, where S refers to.the quantity in the preceding square

brackets.

The numer-ical integration continues with S(l) and 8(3) in place of Z(l)
and 2(3), and when in turn IS(B)i exceeds the set criterion of, say 105 with
single precision arithmetic and a 36 bit computer word, the orthonormalization
is repeated. With homogeneous boundary conditions at the wall, it makes no
difference in the determination of the eigenvalues whether the Z's or S's are
used. A linear combination of the two solutions satisfies the £(G) = 0
boundary condition, but the ¢(0) = 0 boundary condition will in general not

be satisfied unless o, B and w satisfy an eigenvalue relation.

3. Newton-Raphson Search Procedure

The Newton-Raphson method has been found to be satisfactory for obtaining
the eigenvalues. In the spatial theory with w and B8 fixed, the guess value of
. is perturbed by a small amount (A = 0.001 ar) an¢ the integration repeated.
Because ¢(0), the third component of the linear combination of the two
independent solutions Z(l) and Z(z) (or S(l) and S(z)) which satisfies £(0) = 0,
is an apalytic function of the complex varisble a, even after orthonormalization,

tt = Cauchy-Riemann equations

20,(0)  2¢_(0)

aai aar ?

an
3¢_(0) 3¢, (0)
aai = 8ar ’
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can be applied to eliminate the need for a second integration with a,

perturbed.
The corrections Gar and 6“1 to the initial guesses a. and a, are
obtained from the residual ¢(0) and the numerical (linear) approximations to

the partial derivatives by the equations

3¢_(0) a¢r(0) .
3 Gar + 3 001 = - ¢r(0) .
o i
(78)
2, (0) 24, (0)
Bar 6ar + aai 6“1 =T ¢1(0) *

The corrected a. and ay are used to start a new iteration, and the process

continued until Gar and Sai have been reduced below a preset criterion.

4. A Numerical Example

As an example we will consider that the Reynolds number and frequency
are specified for the flat-plate boundary layer, and we wish tc determine
both the complex wave number of the spatial theory and the wave number
and amplification rate of the temporal theory. It is convenient to define

the length scale as
% * k%
e o 2 (79)
With this choice, the Reynolds number is

1/2 _ pol/2

R = UI L - (u: ) (80)

The Reynolds numbers and wave numbers based on the displacement, momentum and

*
boundary-layer thicknesses are obtained by multiplying R and a based on L by
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the appropriate dimensionless thickness. For the flat-plate boundary layer,
these factors are, in the above order, 1.7208, 0.66411 and 6.0114 (u/U1 = 0.999).
The usual form of the dimensionless frequency is

***2
F=u v /U1 = w/R . (81)

For the example, we choose

R = 1000, F = 0.3 x 10°2,

and for the initial guess of the complex a in the spatial theory,

a_ = 0.12 , a, = - 5.0

and for the temporal theory,
a, = 0.12 , wy = 10.0 .

The initial conditions of the two independent solutions are evaluated from
the formulas of Section II-A.4, and the numerical integration started at
v, = y*/L* = 8.0. Each solution is integrated to the wall (at y = 0) by
means of a fourth-order, fixed step size, Runge-Kutta integration. Other
integration methods are also satisfactory, but this simple method has been
found to be trustworthy in a wide variety of problems, particularly in the

(35)

difficult problem of determining the eigenvalue spectrum. Variable step-

size integrators are not recommended.
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The operation of the eigenvalue search procedure is shown in Table I.
The search is continued until 6|a|/|a| is reduced below a preset criterion
(0.005 is usually adequate for three-place accuracy) in the spatial theory,
and 8a/a and Glmillimil separately satisfy the criterion in the temporal
theory. Since W, is held constant in the temporal theory, two perturbation
integrations are required per iteration instead of one as in the spatial theory.
Two iterations are usually sufficient to achieve convergence in a large scale
computation where previously calculated eigenv. 1es can be used to make good
initial guesses. Poor initial guesses were deliberately chosen in the examples.

Once a single eigenvalue has been found for a given boundary layer, all
others can be readily obtained. Automatic procedures can be included in the pro-
gram to produce all of the unstable eigenvalues of a given frequency or wave
number mesh up to some specified large Reynolde number in a single computer run
of a few minutes for a two-dimensional boundary layer. The problem of obtaining
the initial eigenvalue can prove troublesome. If the boundary layer under
investigation is not far removed from one for which the eigenvalues are known,
it is always possible to make a close enough guess for the Newton-Raphson
procedure to converge. If not, it is necessary to perform individual integra-

tions in the complex o plane (spatial) or w plane (temporal). Then the contour

line method of Mack,(35) or the more elaborate methods of Antar(51) and Jordinson

(52)

and Gaster, can be used to locate the initial eigenvalue.

D. Some Numerical Results

1. Amplification Properties of Falkner-Skan Profiles

For a two-dimensional incompressible boundary layer on an impermeable
surface of zero curvature and with no body force ov surface heating, the only

flow parameter left is the pressure gradient. The effect on the amplification
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properties of systematic changes in the pressure gradient can best be
demonstrated with the Falkner-Skan family of similar velocity profiles.
The single parameter of a Falkner-Skan boundary layer is the dimensionless

pressure gradient

* * * *
X dp. X dU1
m= - 7 ——=— — . (82)
* & a U* dx*
P U1 X 1
it is usual to replace m by
8=2m/(m+ 1) (83)

(not to be confused with the lateral wave number). The values of 8 range from
1.0 for the two-dimensional stagnation point boundary ‘ayer, through 8 = 0 for
the flat plate, to B = 0.1988377 for the separation profile. More negative
values of B represent reverse-flow profiles.

Two theoretical principles are useful in interpreting the numerical
results. The first comes from the viscous asymptotic theory, and states
that increasing the negative curvature of the veiocity profile near the wall
increases the stability. The second comes from the inviscid theory of Rayleigh
and states that as the inflection point moves away from the wall, the profile
becoaes more unstable. We need only recall thnt as B increases from zero, the
first effect occurs; as it decreases from zero, the second affect occurs.

Some properties of Falkner-Skan profiles are summarized in Table II,
whern are listed 6*, 0 and 6 (the displacement, momentum and boundary-layer
thicknesses)made dimensionless with respect to L*; H = 6*/6, the shape

factor; U"(0) (= - m), the curvature at the wall; ys/G, the location of the
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inflection point; and Cgs the dimensionless velocity at the inflection point
and equal to the phase speed of the neutral inviscid disturbance.

The temporal stability of Falkner-Skan profiles was computed in great
detail by Pretsch(s) from the asymptotic theory (these results may also be
found in Smith and Gamberoni(SB)), and both the temporal and spatial stability

(17,18)

from divect numerical solutions by Wazzan, Okamura and Smith. For

application to the transition problem, the quantity of primary interest is

the integral of the spatial amplification rate for a constant frequency. With

*

*
L still defined by (79), R by (80) and Uy

by (82), it follows from (66) that

A 2
A, _ A (
n (Ao) m+l f @ dR , (84)

R
[

where Ao is the amplitude at the initial Reynolds number Ro' It is convenient
to take Ro as the lower-branch 1 itral stability point (initial point of
instability for the frequency under consideration) in order to give a unique
meaning to A/Ao. If the definition of the dimensionless frequency given by
(81) is to be retained, then F is no longer constant for a constant dimensional

frequency, but is given by

% % * % R

F(R) = “’2" = ‘;" =2 . (85)

%% & * *
U1 (x) U1 (xQ ) R

£ Kk Ok K
Thus the calculation starts at Rﬁ = Ul(xo) xolv with dimensionless frequency
2
* kx *° %
Fo =@ Vv /U1 (ko), and the integral (84) is evaluated using ai(R) calculated

with the F(R) from (85).
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*
The length scale L 1is not the only possible choice with which to make

* x %
o, dimensionless. The inverse of the unit Reynolds number, v /Ul’ is often

(17,18,49)

found in the literature. With this choice,

Re * =%
A 1 alv
Inf—}§ =-— . 7~ dRe , (86)
A mtl U
o 1l
Re
0

where Re is the x-Reynolds number. This procedure is perfectly acceptable, but
* k%

it has the disadvantage that v /U1 (= ai/R) alvays goes to zero as Re + «

even when the boundary layer is unstable to inviscid disturbances. On the

contrary, the quantity a, is based on a boundary-layer length scale, and so

i
can also be used as the inviscid amplification rate. Comparisons are easy
to make between the viscous and inviscid stability theories in terms of

@,. For example, with 8 = - 0.15, the inviscid (-ai)max is 0.0199, and in
the viscous theory (°ai)max already reaches the slightly higher value of
0.0202 at the low Reynolds number of R = 400.

For the transition-prediction calculations of Section IV, thrce
quantities will be needed: (i) the envelope curve, ln (A/Ao)max vs. R,
formed by the individual 1n (A/Ao) vs. R curves; (ii) the frequency, Fmax .
nf tho envelope curve; and (3) a bandwidth AF of the frequency response
curves to be discussed below. The envelope curves for sever~l values of B
are shown in Figure 1. Both the strong stabilizing effect of a favorable
pressure gradient, and the even stronger destabilizing effect of an adverse
pressure gradient are clearly evident. The corresponding frequencies are

shown in Figure 2. (The B = - 0.05 curve is almost couincident with the

B = 0 curve and so cannot be shown.) We see a clear distinction between
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viscous and inflectional instability. Viscous instability is primarily a
low frequency instability, particularly when the instability only develops
at high Reynolds numbers. In contrast, inflectional instability 1s a high
frequency instability. The ratio of the frequency which gives 1n (A/Ao) =9
for B = -0.15 to the corresponding frequency for 8 = 0.20 is 36.

The need for quantity (iii) .is shown in Figure 3, where 1n (A/Ao) for
the flat-plate bcundary layer is plotted against F for several Reynolds
numbers. As R increases, the maximum amplitude ratio increases and the band-
width of unstable frequencies decreases. This sharpening of the boundary-
layer response must be taken into account in any transition prediction method
that attempts to calculate the integrated (over frequency) amplitude in the
boundary layer. A quantitative measure of this effect is provided by the

bandwidth

AF = F . - Fl 1n (A/A) . - 1l , (87)

where the second term is the frequency at which A/Ao is 1/e of (A/Ao)max on
tle low frequency side of Fmax' It is desirable to define AF this way
rather than as a two-sided bandwidth because the practical requirements of
a large scale eigenvalue calculation are such that A/Ao can always be
obtained for frequencies smaller, not larger, than Fmax’ Figure 4 gives
the ratio AF/Fmax as a function of R for the same B8 as in the previous

figures.

2. Comparison of Tempora. and Spatial Amplification Rates

The requirement to know the direction of the group velocity before

computing eigenvalues from the spatial theory for other than two-dimensional
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waves in two-dimensional boundary layers makes it worthwhile to examine how
accurate are the spatial amplification rates obtained from the temporal

theory and Gaster's relation in this more restricted case. The group velocity
of the temporal theory, as given by (69), can be computed by numerical
differentiation along with the other stability properties provided w, is a
smoothly varying function of the wave number.

Table III presents both wy and a, for four . (three .mplified, including
the maximum, and one damped) at three different 8 and at Reynolds numbers with
large amp~ification rates. The case B8 = 0 provides amplification rates typical
of boundary layers with small favorable pressure gradients; 8 = - 0.10
provides about the largest amplification rates that can be expected in practice;
and the separation profile cea be viewed 22 providing an upper limit for
boundary-layer amplification rates, but not particularly representative of
actual practice. (The maximum ampiification rate of this profile occurs at
R > » and is -0.0480, which is only 127 larger than the R = 300 value of
-0.042%.)

From Table III we see that the Gaster relation is satisfied quite well
at B = 0, and less well at the two other B's. At B = 0, the frequency and
phase velocity from the two theories also agree closely. It can also be
noted that the ratio - wilai is less than the group velocity at the maximum
ampl:rication rate for all three values of B. The maximum difference between
cg and "wi/“i for amplified disturbances occurs at the maximum amplification
rate, and is 1,6% for 8 = 0, 2.8% for B = -0.10, and 5.7Z for the separation
profile. In the latter case, there are also important differences in W, and
cph between the two theories at both low and high wave numbers. The conclusion

can be drawn from Table III that the temporal theory and Gaster's relation
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of "er a satisfactory method of obtaining spatfal umplification rates for
zero and favorable pressure gradients, but that this approach becomes
increasingly mere unreliable as the adverse pressure gradient increases.

3. Group Velocity Direction for Oblique Waves

The importance of the choice of the direction of maximum amplification
in the spatial theory can be readily demonstrated by means of oblique waves
in the flat-plate boundary layer. Table IV gives results for the two-
dimensional wave of dimensionless frequency F = 0.3 x 10-4 at R = 1600,
and for three oblique waves with ¢ = 450, 60° and 75°. The Reynolds numbers
and F for these waves were chosen so that in the ¢ direction the Reynolds
number (R = Rcos y) and dimensionless frequency (F = F/cos2 Y) are the same as
for the two-dimensional wave. According to (22), the Squire transformation,

the spatial amplification rate in the x-direction is

a, = &i cos ¢y ,

where &1 is the spatial amplification rate of the two-dimensional wave with

F=0.30 x 10-4 at R = 1600. Since &i = -3.82 x 10-3 from Table 1V, the
other three values should be -2.70, -1.91, and -0.989 for v = 45°, 60°, 75°
respectively. We can see that, as already stated in Section II-A.2, this

relation is true only when v =%, For ¢ < ¢, a, is larger than these values

i
by amounts ranging up to 39%. Consequently, it is not srmissible to use
¥ = v in order to preserve the real form of the Squire transformation.

The correct § is the direction of the group v:locity. Figure 5
s]'ws how this direction,now identi&ed as ¥ and computed from the temporal

theory, varies with ¢ for two fixed values of ¢ at R = 1600. The important

@lv



77-15

conclusion to be drawn from Figure 5 is that regardless of the orientation of
the constant phase lines (the crests), the group lines, which give the
direction of energy propagation, remain concentrated near the freestream

direction. Furthermore, the 10° entry of Table IV sh~ws that o, is nearly

i
the same as with ¢ = 0. Thus, for oblique waves in a two-dimensional boundary
layer, it is a p:rmissible approximation to use the spatial theory with V= 0°.
However, it is still necessary to use either the complex form of the Squire

transformation cr the formulation given in Section I1-A.4 to compute the

eigenvalues.

ITI. STABILITY EXPERIMENTS
A. Schubaver-Skramstad Experiment
The linear stability theory long went unapprer iated except by its
founders because of the lack of any conviacing experimental confirmation.
This needed comfirmation was brilliantly supplied bv the now classic experi-

(5 which was carried out at the National

ment of Schubauer and Skramstad
Bureau of Standards in the early 1943's, but not published because of war-

time restrictions uuntil 1948. This experiment owed its success both to the
ingenuity of the experimenters and to the development for the first time of a
wind tunnel with a really low turbulence level (about 0.032 in the working
section). VWhen, with this low turbulence level, the signal of a hot-wire
anemometer placed in the boundary layer of a flat plate was displayed on an
oscilloscope screen, modulated sinusoidal wave trains with almost no random
character were clearly seen. Schubauer and Skramstad demonstrated conclusively

that these were true boundary-layer oscillations, and that they were the

cause, and not the effect, o1 transition.
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In crder to make a more quantitative connection with the theory of
Tollmien and Schlichting, they used a vibrating ribbon in order to produce
disturbances of a fixed frequency with a controlled injitial amplitude. The
hot wire then measured the wave length, phase velocity, and amplitude of
the artificially produced waves as a function of Reynolds number. Numerous
comparisons were made with the theory which were on the whole satisfactory,
although the asymptotic theory at that time did not yield very accurate
numerical results. However, it is well to emphasize that the virtue of this
experiment did not lie in an exact quantitative correspondence with theory,
but rather in the systematic way that all essential features of the theory
were shown to be correct, and in the way the oscillations were shown to
be necessary precursors of transition.

The hot wire measures directly the rms disturbanze amplitude as a
function of downstream distance, and the amplification rates must be deduced
from the slopes of such measurements. Although the interpretation of the
measured amplitude has difficulties associated with non-parallel flow
effects, it is still of considerable interest to compare the amplitude
measurements with the quantity A of stability theory. The comparison is
given in Figure 6. The experimental wave amplitudes (u' at a fixed distance
from the wall) are all referred to the amplitude at X, = 2 in. behind the
ribbon which was located 4 .t. behind the leading edge of the plate with

U1 = 64 ft/sec. Therefore, the integration of a, was also started at X,

i
(Ro = 1256), and Ao is the amplitude at X, rather than at the neutral
stability point. The experimental points in Figure 6 show conclusively that
the frequency is the fundamental parameter that determines whether a wave

will be amplified or damped, and the agreement with theory is satisfactory

although far from exact.
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This {8 a good place to bring out some importa’ Juantitative aspects of
instability waves. The ratio of the wavelength to t.... displacement thickness

is

A 2% p.4
S5 (88)

s o & rel/2
r N

At R = 1256 (the x, of Figure 6), a. = 0.128 for the frequency with the
largest amplification rate (f = 120 hz, F = 0.311 x 10-4). Hence A = 28.5 6*
(= 8.2 §), and we see that unstable Tollmien-Schlichting waves are long
compared to the boundary-laver thickness. This result from a theory that
assumes parallel flow was one of the original criticisms made of the theory,
“nd also explains why a considerable effort has been made recently to develop
non-parallel theorie§?2’33’54) Another interesting point is the vapidity with
which the waves grow. The 120 hz wave increases in amplituds 2.5 times in

6 in. (= 88 6*, or 3.1 A). From the definition of the amplification rate,
the fractional change in amplitude per wavelength, with a, and a_ assumed

i

constant, is

(89)

or about 33% for the 120 hz wave. Although this large grow:h only exists
near the maximum amplification rate, it still raises problems concerning

the application of kinematic wave concepts to instability waves.

B. Other Older Experiments
(55.56)
The next stability experiments were carried out by Liepmann.

These experiments were designed primarily to study the stability and

-36-



77-15

transition of boundary layers on concave surfaces, i.e. Gortler instability,
but measurements were also made on the convex side of the curved plate. Two
plates were used, with radii of curvature of 20 ft. and 2-1/2 ft., but omnly
the 20 ft. plate was used for the detailed measurements on the convex side.
The boundary-layer velocity profile was close to that of a flat plate, but
the neutral-gtability curve was found to define an unstable region somewhat
larger than in the Schubauer-Skramstad experiment, perhaps reflecting a
slight average adverse pressure gradient. Transition measurements on the
convex sides of both plates showed no effect of curvature, but the imposition
of favorable and adverse pressure gradients on the 20 ft. plate did produce
an effect. The transition Reynolds number was increased for a favorable and
decreased for an adverse pressure gradient, and the percentage change was
greater for the favorable pre- ¢ gradient. No stability measurements were
made with a pressure gradierr indeed nco theoretical statility resulcs
on the effect of pressure gra...r. -ere available to Liepmann at the time of
the experiments.

(57)

The next experiment, by Bennett, studied the influence of freestream
turbulence on the instability of the flat-plate boundary layer. A grid was
installed upstream of the test section to raise the turbulence level to
0.42%Z. The signal from a hot wire in the lawinar boundar: layer showed
fluctuations of a random nature resembling turbulence with little evidence of

(58) work

Tollmien-Scnlichting waves, an observation in accord with Dryden's
of 20 years previously. However, when the power spectrum of the fluctuations
was measured with a wave analyzer, a local peak was found to develop at

about the most unstable frequency of linear stability theory. This peak

grew with increasing downstream distance, and gradually disappeared after

transition started as the spectrum evolved into one typical of a turbulent
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boundary layer. Measurements were made at too few x stations in the laminar

region to determine the amplitude history of the peak, and consequently no

conclusion is possible from this experiment on the crucial point of whether

the linear disturbance growth is affected by the external turbulence level.
A flow visualization technique for instability waves using tellurium

coated rods was developed by Wortmann(sg)

for use in a water boundary layer.
When a voltage was applied to the rods, tellurium ions, which are black, were
released and made the instability waves clearly visible. It was then possible
to make quantitative measurements, and a neutral stability curve was determined
that compared favorably with Schubauer and Skramstad's. Other flow visualiza-

(60,61) dye(62) and hyd -ogen

tion techniques that have been used are smoke,
bubbles.(63) These methods all show the presence of Tollmien-Schlichting
waves, but have been applied mainly to study the details of the transition
process following linear amplification.

The hot-wire anemometer continued to be the primary tool of the NBS
transition studies, which, following the work of Schubauer and Skramstad, also

(64) studied

(65) and

concentrated on the non-linear region. Schubauer and Klebanoff
the characteristics of the turbulent spot; Klebanoff and Tidstrom

Klebanoff, Tidstrom and Sargent(66)

the sequence of events from the end of
the linear region to the first appearance of a turbulent spot. It was found
that the initially two-dimensional Tollmien-Schlichting wave develops a span-
wise periodicity in amplitude while it is still undergoing linear amplifica-
tion. There appears to be a characteristic spanwise wavelength that has
since been observed in other wind tunnels, but no convincing explanation has
yet been given for the origin of this periodicity. The Knapp and Roache(6l)

smoke pictures clearly show thet a similar three-dimensionality also

develops in natural transition.
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C. Three Recent Experiwuents

1. Ross, 3arnes, Burus and Ross Experimert

What amounts to a repetition of that part of the Schubauer-Skramstad
experiment which measured the instability of a flat-plate boundary layer was

(67) Their wind tunnel had the

carried out by Ross, Barnes, Bucns and Ross.
same turbulence level as the NBS tunnel, was of similsr size, the flat plate
was also mounted vertically, aud a vibrating ribbon was used to produce the
instability waves. The hot-wire measurements were compared with the detailed

calculations of Jordinson.(68)

and excellent agreement was obtainea for the
distribution of u' through the boundary layer. Quite good agreement was also
obtained for che A/A0 of three frequencies {F x IOA = (.82, 1.10, 1.57".
Particular attention was paid to the region of the minimum critical Reynolds
number and the maximum unstable frequency. Measurements in this region are
difficult because the boundary layer is both thin and rapidly growing. A

neutral-stability curve was arrived at with Rcr = 230 and Fp = 4 x 10_4

compared to the theoretical values of Rcr = 302 anc Fp = 2.5 x 104. The
differences between theory and experiment were attributed to non-parallel flow
effects, a supposition since confirmed by the gocd agreement of the Saric-

Nayfeh theory(33)

with the above experimental results.

It must be pointed out that the frequencies that define the Rcr
portion of the neutral-stability curve are not those that are important to
transition in environments wich small disturbances. For example, at the
Schubauer-Skramstad transition Reynolds number of 2.8 x 106, we see fron
figure 2 that F___ = 0.29 x 10™% compared to F = 3.5 x 10™% at R, = 250
according to Saric and Nayfeh. The former frequency first becomes unstable

at R = 820, where the non-parallel flow effects are less severe than at the

minimum critical Reynolds number. 1he non-parallel flow effects will be
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even further reduced in boundary layers with favorable pressure gradients
where instability occurs at much higher Reynolds numbers than for the flat
plate.

2. Klebanoff-Tidstrom Experiment

It is surprising that tne traditional low-speed stability theory has
never been tested experimentally for other than the Blasius boundary layer

studied by Schubauer and Skramstad. There have been boundary-layer stability

experiments on the effects of rotation,(69) compressibility,(7o)

(n) (72)

free

convection, and a heated wall in water, but the accompanying
theories represented extensions of the existing theory to new flow situations.
There have been transition experiments on the technically important effects
of pressure gradient and suction, but no stability experiments.

There is an important aspect of transition that also has received
little attention, and that is the relation of a particular disturbance
source to the transition process in a boundary layer. In other words, the
precise mechanism by which, say, freestream turbulence, sound, and different
types of roughness cause transition remains to be discovered. Only in the
case of two-dimensional roughness has the mechanism been found thanks to a

remarkable experiment by k.. anoff and Tidstrom.(73)

For circular roughness
elements with a diameter of about 0.8 6*, these investigators determined that
transition was moved forward from its normal location, not by a disturbance
introduced into the boundary layer by the roughness, but by the increased
amplificatior of an already existing instability wave in the pressure
recovery zone behind the roughness. In a certain sense, w2 do have here

an example of a stability experiment with a pressure gradient, but this

very special flow is scarcely representative of pressure-gradient boundary

layers.
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Although the demonstration by Klebanoff and Tidstrom of the actual
transition mechanism was complete in itself and did not rely on theoretical
comparisons, they did compare their disturbance growth measurements with

(8)

results obtained from Pretsch's charts. Unseparated adverse pressure
gradient Falkner-Skan profiles were fitted to the measured profiles on the
basis of the shape factor H. The calculated and measured growths were in
good agreement. However, there are three objections that can be raised

to Klebanoff and Tidstrom's procedure: (i) the profiles in the initial
part of the recovery zone are clearly separated; (ii) the Pretsch charts
are not very accurate for adverse pressure gradients; and (iii) the group,
and not the phase, velocity should have been used to transform temporal to
spatial amplification 1ates.

When the computation is repeated with the correct spatial amplification
rates for the fitted Falkner-Skan profiles, the results are not in agreement
with the measurements. The obvious next step is to use the correct velocity
profiles which were measured in great detail and with little scatter.
Unfortunately, the separated-flow region, which has a strong influence on
the instability, could not be measured because of its closeness to the wall.
In any case, stability calculations based on experimental curve fits to
profiles with an inflection point are not likely to be meaningful. The
conclusion to be drawn is that although the Klebanoff-Tidstrom experiment
firmly established that two~dimensional roughness influences transition by
destabilizing the boundary layer, the amplification measurements cannot be

used as a test of a particular form of the stability theory in a rapidly

varying pressure-gradient flow.
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3. Gaster-Grant Experiment
Another recent stability experiment of great interest was carried out

by Gaster and Grant(74)

in the same wind tunnel used in the Ross, Barmes,

Burns and Ross experiment.(67) All of the other stability experiments with
artificially produced disturbances have followed directly in the Schubauer-
Skramstad tradition of dealing with a Tollmien-Schlichting wave of a single
frequency. This approach was followed even where the traditional vibrating

(70) (75) In the

ribbon was replaced by a siren or a glow-discharge device.
latter instance, oblique waves were also produced, but still only of a single
frequency. Gaster and Grant used the completely different approach of trans-
mnitting an acoustic pulse from a loudspeaker through a small houle in their
flat plate to produce a pulse disturbance in the boundary layer. This
disturbance, after the rapid decay of all higher modes consists of Tollmien-
Schlichting waves of all frequencies and orientations. This type of experi-
ment, while not as suited to mapping out stability boundaries and making
the other usual checks of stabilitv theory as in a vibrating ribbon experiment,
is in some respects closer to the transition problem. An external disturbance,
such as freestream turbulence or sound, will also produce Tollmien-Schlichting
waves of all frequencies and orientations, but in a random manner that makes
the ensuing wave motion in the boundary layer difficult to sort out. The
pulse experiment gives » controlled disturbance of this type which enables
the details of a group of waves (a wave packet), rather tlhian a single
Fourier component, to be investigated.

In the experiment, the hot wire was placed at 15 spanwise stations
at each of six downstream locations to record the passage of rhe wave
packet. Although several theoretical treatments of the motion of a pulse

(76-79)

in a shear layer have eppeared, these papers all made use of asymptotic
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methods. In order to have more exact numerical results, the amplitude of

the wave packet was calculated from

[- ] o0 x
A(x,z,t) "[[ x']‘/l’ expg i[f ax) dx + Bz-ut : dg dw (90)

o o0 : X

where xo is the location of the pulse; and the Fourier coefficient has been

1/4 is intended to account for the

set equal to uni.y. The factor x
effect of the boundary-layer growth, end the integral of o(x) appears
for this same reason. The eigenvalues a(x) were obtained from the
spatial stability theory for all values of B and w by use of the Squire
transformation and a complex Reynolds number. In order to evaluate the
double integral with sufficient accuracy to reproduce the wave packet,
10,000 eigenvalues were needed. The agreement that was achieved
betweea theory and experiment for about the first 2/3 of the distance
covered was impressive. After this, the experimental wave packet

distorted in a way nou given by the theory, possibly due to non-linear

effects.
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IV. TRANSITION PREDICTION

A. Nature of the Problem

A boundary layer has a specific displacement thickness and skin frictionm,
but it does not have a specific transition Reynolds number. The observed transi-
tion Reynolds number depends on the presence of disturbances in the boundary
layer, which in turn are related té various disturbance sources. If there
were no disturbances, there would be no transition and the boundary layer would
remain laminar. Consequently, it is futile to talk about transitiou without
in some way bringing in the disturbances which cause it, and any transition
criterion of an empirical nature can only be valid for a very specific dis-
turbance environment.

Another point which must be settled before going deeper into the subject
is to define the circumstances under which linear theory can be used to predict
transition. Disturbances such as a large three-dimensional roughness element,
or an air jet, cause transition to occur in the immediate vicinity of their
location. However, in many other instances, the disturbances act in a more
indirect manner. A moderate freestream turbulence level or acoustic intensity
affects transition by producing Tollmien-Schlichting waves in the boundary layer
which then amplify, distort, and finally culminate in the sudden appearance of

(64) These instability waves can be described initially by

a turbulent spot.
linear theory, and if the initial disturbance amplitude is sufficiently small,
the region of linear growth can be of significant extent. In this case, the
exponential growth of a linear disturbance, and the absence of an extensive
region of Jis*orted laminar flow before the sudden breakdown to turbulence
that is such a distinguishing feature of low-speed boundary-layer transition,

makes it feasible to base a mzthod of transition prediction directly on the

linear theory itself.
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B. Amplitude Density Methods

1. Liepmann's Method

The first application of linear theory tc transition, by Schlichting,(A)

has already been meutionecd in Section I. A later method, developed by

m .,

Schlichting for application v~ airfoils and described in his book, as

based on the minimum critical Reyndlds number, aad thus avoided having to

(56) who first worked out

introduce the disturbance level. It was Liepmann
a formula that included most of the ingredients needed to vse linear theory
in transition prediction. This method can be classified as an amplitude
density method, because it considers only a single frequency compoment, i.e.,
a single spectral line, from what must be a contimious disturbance power
spectrum.

Liepmann's idea was that transition should occur when the ratio of
the Reynolds stress of the boundary-layer disturbance equals the mean viscous

stress, and that the linear theory provides an adequate means of computing the

Reynolds stress. Liepmann's formula is

—_E
a2 )| ult v Az(%) (91)
T c - 5 -y o ?
f (ulz VIZ)% u’ omx
o
where Ce is the skin-friction coefficient. Liepmann used results of
Schlichting(a’so) to evaluate all terms in (91) except the initial

amplitude Ao' He believed A° to be related to the freestream turbulence
level, but the details of this relationship are as unknown today as they

were 30 years ago.
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2. e9 Method

The next step was the independent development by Smith and Gamberoni(53)

(81) of what 1is often called the e9 method. Smith and Gamberoni,

and by Van Ingen
starting from (91), found thac the only quantity on the right-hand side that
they could compute other than the skin friction, namely the amplitude ratio
A/Ao, was itself sufficient to correlate a large number of experimental mea-

(8)

surements of transition. With the use of the sta*llity charts of Pretsch,
and an approximate method of couputing the boundary layer developed by Smith,(sz)
transition was found to occur when zn(A/Ao) > 9, A similar result was obtained
by Van Ingen, but with the exponential factor equal to 7 or 8. This method has
been justly criticized for basing transition on a ratio and not on the dis-
turbance amplitude. However, this criticism ignores the fact that the wind-
tunnel data which were used to develop the method probably refer to rather
similar disturbance enviromments, and a'so doesn't give credit to the value

of the e9 method in comparative studies. For a fixed value of Ao, which is
equivalent to a fixed disturbance environment, the disturbance amplitude in

the boundary layer does in large measure vary as A/Ao. Consequently, the
effect on transition of changing a parameter which governs the mean boundary
layer, such as the p.c¢ssure gradient, can in this particular circumstance be
estimated by means of the single factor A/Ao.

(83)

In more recent work, Jaffe, Okamura, and Smith raplaced the original

approximate numerical methods of Smith and Gamberoni with more exact methods,

and Van Ingen(sa)

widened the range of applications. However, the method
remains essentially as originally developed, and the key to success still lies
in a judicious choice of the value of the exponential factor. The use of the

method is simplicity itself once the necessary numerical tools have been
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assembled. Three computer programs are needed. The first computes the
inviscid pressure distribution over a specified planar or axisymmetric
body shape; the second uses this pressure distributio to compute the laminar
boundary layer; and the third computes the spatial amplification rate and
its integral, the amplitude ratio. Transition is considered to occur whenever
zn(A/Ao) reaches the chosen numerical factor.

The .'.ly aspect of the method that remains to be mentioned is the
equation for A/Ao. With a non-similar boundary layer, there is no simple
relation between the arc length x' and the boundary-layer thickness as «<ith

the Falkner-Skan profiles. One convenient expression is

*
X
* % *
tn(d)--= ——LR* < )al%:) (92
o v xo* & Un /] \°¢

where c¢* is the chord or body length, Um* is the free.tream velocity, Ul*(x*‘

4

is the edge velocity, RS* is the local displacement thickness Reynolds aumber,
and (Qi)s* = a&* 6*. As before, the integr.l is evaluated for a constant
dimensional frequency. Another expressicn, which preserves the boundary-

layer length scale L*(x*) = [v* x*/Ul*(x*)]%, is
Ke U*%
A . L
En(A> 2] ai(u *) dR_, (93)
o x
(Rm)o
where R = w_* x*/\)*)l5 and o, = o, L".

i i
3. Modified e9 Method

The main problem with the e9 method lies in the proper selection of
the expouential factor, which is by no means always equal to nine. One .ay

to avoid an arbitrary choice is to relate the factor, which can be called n,
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to the disturvance level in an empirical manner. This procedure has been

(84) (85)

applied to the case of rreestream turbulence by Van Ingen and Mack.

Wind-tunne! data on the influence of freestream turbulence on transition on

a flat plate have been collected by Dryden(zs)

and are shown in figure 7.
A zore vecent and more complete collection of data has been assembled by
Hall and Gibbings,(ss) but the additionsl data still follow the trend of
figure ?. The start-of-traucition Reynolds number is Ret and the turbulence

"? "2

level is ul'/U s or T= ((. + ;—25/3 vy ]% if all three fluctuating

1
velocitv components have been measured. The turbulence level in a low tur-
bulence wind tunnel is increased by successively removing the damping screens,
and tigh levels are achieved by installing grids just upstream of the test
gention. The total disturbance level in a wird cunnel is made up of both
turbulence and sound. Below T = 0.1%, the sound component controls
transition. As a8 result, decreasing the turbulence component only decreases
the signal registered by a hot-wire anemometer without affecting the transition
Reynolds mmber. It is for this reason that the cuive in figure 7 is level
for T < 0.1%. The effect of freestream turbulence on transition is given
by the sloping p: rtion of the curve for T > 0.1%.

An analysis of vesults computed from the stability theory shows that

this portion of the curve can be accounted for by considering A to remain

fixed at transition, and with

A ~T7"" . (94)

This same variation in A/Ao is given by letting the exponential factor vary

according té

n=-843-2.414nT. (95)

-48-



77-15

This metbod, where n is related directly to the disturbance level, may be
called the modified e’ method. Whether it is valid for other than flat-
plate boundary layers cannot be determined until systematic transition data

comparable to figure 7 become available for more general boundary layers.

C. Amplitude Method

1. PFormulation of Amplitude Relation

Although the quantity A has been referred to in the foregoing as the
amplitude, it is more properly called an amplitude density because we have
been dealing solely with disturbances of a single frequemcy. That is, A
represents only a single spectral line of a continuous power spectrum. The
method of Liepmann, the e9 and modified e9 methods are all amplitude density
methods. An amplitude density method which considers A to be a function of
the energy density of the one-dimensional power spectrum of the external

disturbance was developed by Mack(sg)

for transitior. in a supersonic wind
tunnel. Although this method was reasonably successful in explaining the
effects of Mach number, unit Reynolds number and tunnel size on transition,
it can be criticized on the basis that a single spectral line is not an
adequate basis for relating the disturbance spectrum in the boundary layer
to the spectrum of the external disturbance source.

Consequently, another method has been developed which approximates
the actual wide-band disturbance amplitude in the boundary layer. The starting
point is the following expression for the disturbance amplitude Ad as a function
of the Reynolds number R = (le/v)%:

® 2

2 2 A lwv vx'\2
A, (R) =/d(§ﬁ)flxo ({;’J , BA)K [—2 , s(ﬁ—) : R] d(Brn). (96)
° 1" e 1 o U1 1
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In order to clarify the derivations, the use of asterisks has been dropped

and all quantities are now dimensional except A, A  and Ay which are referred
to the freestream velocity. Im (96), A is the length scale of the extermal
disturbance, w its (circular) frequency, and P its lateral wave number. The
anitial disturbance in the boundary layer is considered to be produced directly
by the external disturbance and thus must be scaled in terms of A, while the
amplitude ratio contimwes to be scaled in terms of the boundary-layer lergth

scale. The velocity scale for both A and A/Ao is U - e basic assumption

v
in (96) is that all phase relations are random so that the various harmomic

components add in the square. Another viewpoint is that A

4 is the long time

average of the disturbance amplitude, and we will be determining the transition
Reynolds number of this average disturbance. What we would really like to know
is the average tramsition Reynolds number produced by a disturbamnce source that
is steady only in its time average, and it is by no means certain that the two

Reynolds numbers are the same.

It is entirely possible to evaluate the double integral of (96) numeri-
cally once Ao is known, but it is more prudent to adopt a simpler approach and
keep the numerical requirements nearly the same as for the e9 method. The two
limiting cases which can be considered are where the bandwidth of the boundary-
layer recponse {s small compared to that of the external disturbance, anrd where
the opposite prevails. We will treat only the first of these. Hence A/Ao

acts as a §-function and (96) can be written as

2 2 A
AS(R) = A [({',’—) , (a/omx] X
1 maﬁb

® 2
X
“(m_l\)fé [@'— B(ﬁ)] d(Bn . (97)
‘!‘ Ul Ao Ul2 Ul
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We may further take advantage of che fact that the responsc curves A/Ao
are .iten rather similar in shapr, and evaluate the double integral in an

approximate manner to arrive at

U, A
akm =’ [(;;:)m (BA)mx]( v) P X
A | av (vrx:%]2 v [ vx sj}
A‘o[u 27 T\Yy, (u 2) ("1)

1 max 1

The last two factors are consistently defined bandwidths of the frequency
and lateral wavenumber response curves. The factors (UlAlv)2 and 1/R come
from converting the integration variables mmll)1 and 8A into the boundary-
layer variables aN/012 and B(vxlul)%. The coastant C1 expresses the difference
between the exact and approximate integratioms.
2. Interaction Relation

In order to proceed further in the evaluation of Ad’ it is necessary
to relate Ao to the particular external disturbance under consideratior.
Unfortunately, at the present time nothing is known about the mechanism by
which any external disturbance produces Tollmien-Schlichting waves. Although
we could proceed on a purely empirical basis, a better appreciation of the
problem is achieved by adopting a particular viewpoint. The viewpoint we adopt
is that the instability waves are produced in the viscous sublayer, or Stokes
layer, set up at the wall by the freestream disturbances. The forced response
in this layer to a sinusoidal disturbance is obtained from the simplified model
of Prandtl.(z) This approach was used by Sternberg(go) in studying the viscous

sublayer of a turbulent boundary layer. The final step is to consider Ao to

be proportional to the induced normal velocity of the forced response. The
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idea of relating the free to the forced response had some success in studying

supersonic boundary layers irradiated by strong acoustic disturbances.(gl)

A straightforward analysis leads to

2
Z(mA )_2[1.(«;1\ ,)]
A = 5 BA =C 7 Vv -~ , B
o \v, 2 |y, v \y,
2
-cz(%)&{z_ﬁ'i'"_lz_a“l . (99)
2 U 2 2
nUl co3 ¢

where vJ is the rms normal "viscous" velocity of the harmonic component
(mA/Ul, BN, pé is the corresponding rms pressure fluctuatiom at the wall,
and ¢ is the direction normal to the constant phase lines and cannot be near

90°. The pressure fluctuation can be written more comveniently as

2
P’((HA/U ’ BA) 4 2
i uuibe St Y -0 W Y [ A B (100)
2 ) v,
°U1 oY,y

where p’ is the wide-band rms pressure fluctuation, and ?2 is a dimensionless
two-dimensional spectrum function. A two-dimensional spectrum function is
needed to account for the distribution of energy through dif{ferent orien-
tations for the same frequency. What is being said here is that a harmonic
cononent (wA/UI,BA)of the freestream disturbance excites a Tollmien-
Schlichting wave of the same frequency and orientation with an energy density
proportional to the pressure-fluctuation energy density of the freestream
component under the assumption that the imposed pressure fluctuation at the

wall is the same as in the freestream. The proportionality factor is the

dimensionless frequency wvlulz, so that this line of reasoning has produced

-52-



77-15

the result that high frequencies are the most effective in producing insta-

bility waves. There is no cross spectral transfer of encrgy.

D. Effect of Freestream Turbulence on Transition

1. Application of Amplitude Method
In order to proceed further, we now restrict the freestream disturbance
to turbulence, and furthermore consider the turbulence to be isotropic. As

the pressure fluctuation appearing in (99) has bcen assumed to be the same as

in the freestream, isotropic turbuleunce theory(gz) gives
A4
4 ul
oy (u_) . (101)
ou, 1
Consequently,
u, &4
At (:;—" : BA) - c32(m2) (U—l) F, (UM : BA) —1 . am
° 1 U 1 1 cos ¥

As the x-Reynolds number does not appear in (102), we may take Ao to be the
amplitude at the neutral-stability point.

For a band of waves of the same frequency and different orientationms,
the two-dimensional (B = 0) component will be the most amplified for fre-
quencies along the envelooe curve of Ln(A/AO), i.e., the maximom ln(A/Ao) at
a given Reynolds number. These frequencies are given in figure 2 for the
Falkner-Skan profiles. The calculation of the lateral bandwidth A[B(vx/Ul)%]
in addition to ln(A/Ao)max, Fmax and AF, involves the computation of four or

five times as many eigenvalues as are otherwise needed. Not enough numerical

results are available to make a general statement about the behavior of the
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lateral bandwidth, but for the flat-plate boundary layer it decreases slightly
with increasing R. For example, when defined, as i8 AF, as the AR at which A/Ao
has decreased to l/e of its maximum value, it is 0.109 at R = 900 »ud 0.081 at
R = 1600. Since this change has little influence on the transition Reynolds
number, we will proceed on the basis that the two-dimensional component is
the most amplified and that the lateral bandwidth is constant. Consequently,
the substitution of (102) into (98) yields, with this simplification,
2, J\&
AdZ(R) - c (‘_’_\1}) (;l) '11i ) [(%A) ] X
1 17 max

2

()L (]t
U1 o U1 max U1

max

The three quantities on the second line ot (103) are all determined from
stability theory. The first two of these are needed for the e9 method, and
the third is determined as explained in Section II-D.l without having to do
any extra eigenvalue computations.

The quantities in the first line of (103), except for R and the free
constant C, are associated with the turbulence. It only remains to develop
an expression for the spectrum function from isotropic turbulence theory.

A convenient starting point is von Kirmdn's normalized (to 2m) interpolation

formula(ga)

-5/6

2
- 4
El(kl) =4 [1 +(3 kl) ] (104)

for the one~dimensional spectrum function of the longitudinal velocity com-

ponent. The dimensionless frequency wA/U1 has been replaced by the dimensionless

-54-



77-15

longitudinal wave number k1 for the subsequent derivation. This procedure
is permissible because all wave numbers k1 have the convection velocity Ul.
When Batchelor's theory(gz) is applied to (104), a -7/3 rolloff is obtained
for the one-dimensional pressure spectrum inc:iead of -5/3 as in (104). A
normalized interpolation formula equivalent to von Kdrmdn's which has this

behavior is

21-7/6
5
Fl(kl) =4 [1 +(€ kl) ] (105)

The one-dimensional spectrum is giver in terms of the three-dimensional

spectrum by

. -]
Fl(kl) = 20 k F3(k) dk , (106)
ky

12 + kz2 + k32)%, and the two-dimensional spectrum is given in

terms of the three-dimensional spectrum by

where k = (k

Fylk),) = f Fy(k) dk, , (107)
-0
- 2 2.3
where k12 (k1 + k2 )¢. Therefore,
. -]
dF
S § 1 1
Fz(klz) =-7 : (kz . 2)% ™ dk . (108)
12 12

An approximate evaluation of (108), which uses (105) and is correct for

k12 >>1 and k12 =0, is

\2 '5/3
Fy(k,,) = 1.78 [1 + (0.82 k,3"] . (109)
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It may be observed that the rolloff in F, is -10/3 as opposed to -7/3 for

2

F, and -5/3 for E,. For use in (103) where kz( = B) is zero, k,, is replaced

1 12
by mA/Ul. The two spectrum functions F, and F, are shown in figure 8. It
may be observed that the integral of F2 is equal to FI(O)/Z as required by

the above equations.

2. Numerical Results

All of the apparatus has now been assembled to make use of (103), but
first the constant C must be evaluated. According to figure 7, Ret = 2.8 x 106
at T (or u{/Ul) = 0.001 for the flat-plate boundary layer, and with C = 1208
Ad = 0.04 at this Reynclds number for RA = UlAlv =4 x 10“. In all subsequent
calculations, C retains this value and tramsition is predicted to start whenever
Ad first reaches 0.04. Any other value of Ad could have been chosen with a
proportionate change in C.

It is easy to see from (103) that for given values of R and RA’ Ad
varies as T2, and Ad/T2 thus defines a single cur .. There are two effects

of the scale Reynolds number R, which tend to oppose each other. The first

A
effect increases A, through the appearance rf RAlas the proportionality factor

d

relating the bandwldths referred to the boundary-layer scale length to the
bandwidths referred to the turbulence length scale. Another way to look at
this effect is that s the turbvlence scale increases, the response curves
spread over a g=:aler -‘r2gz:ncy range of the turbulence power spectrum, with
the result that mor-» erergy is included in the amplified band of frequencies
and the transition Reynolds number is reduced. The seco:r . effect is that as
RA increases, the unstable frequency band, which is fixed in terms of wv/Ul2
(cf. figure 3), moves to ’.igher dimensionless frequencies wA/Ul (= F'RA?

with a smaller energy density and the transition Reynolds number is increased.
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(88)

The only reported measurements on the effect of scale on transition are

for turbulence levels between 1% and 3%, and show a marked increase in the
transition Reynolds number with an increase in scale. The amplitude method

gives a decrease of 167 in Ret at T = 0.027 as RA increases from 1 x 104 to

8 x 104 and the first effect prevails. At T = 1%, there is still a substantial
linear amplification region before transition, but this region is not necessarily
what is controlling transition. The Ret of the amplitude method initially
decreases as RA goes from 1 X 104 to 2 x 104, but then increases by 167 as RA
increases further to 8 Xx 104 and the second effect prevails. This increas:

is smaller, and Ret higher, than in the experiment.

Disturbance growth curves for the flat-plate boundary layer are shown
in figure 9 for several turbulence levels. It is the steep slopes of these
curves which are the basic justification for the use of a method based on
linear stability theory for transition prediction. Figure 1C shows Ret as
a function of T for six Falkner-Skan profiles, and the experimental flat-plate
data are repeated from figure 7. The theoretical curve given by the amplitude
method for B = 0 agrees well witl. these data for 0.09% < T < 0.27%. For
T < 0.09%, transition is controlled by sound, and agreement with the theory
is not expected. There is little point in being concerned about lack of agree-
ment elsewhere, because the experimental data to properly test the theory do
not exist at the present time. Only when enough data are available to make it

possible to sort out the effects of T and R, will it be pcssible to say whether

A
the method given above properly accounts for the effect of freestream turbulence.
The curves in figure 10 for the other values of 8 give some idea of the

influence of a pressure gradient on transition. However, they cannct be used

for the prediction of transition in a real boundary layer on the basis of local
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values of B, because Ret depends on the amplification history of the disturbance.
Only if the particular value of B exists over a substantial portion of the
boundary layer, a situation most likely to arise fr. small favorable pressure
gradients, can figure 10 be expected to give a quantitative estimate of the
pressure gradient effect. Figure 11 is a crossplot of the results to show the
effects of B for several turbulence levels. The effect of T on Ret is almost
independent of B for adverse pressure gradients, but for favorable pressure
gradients T has a progressively reduced effect as B increases.

It is of interest to know the value at transition of ln(A/Ao)max, i.e.
the e factor n, according to the amplitude method. In the e9 method, n is of
course equal to nine for all boundary layers and all turbulence levels; in the
modified e9 method n is given by (95) as a function of T for all boundary layers.
Only with the amplitude method is n a function of both T and the boundary layer.
As B decreases from B = 0 to -0.1 with T = 0.1%, n decreases from 8.2 to 7.7;
as B increases to 0.2, n increases to 10.1. The effect of this variation in
n on Ret is more clearly seen if we refer to the dashed curve in figure 11 of
the e9 method. This curve is close to the T = 0.05% curve for B < -0.05, but
with higher values of B it departs more and more until at B8 = 0.2 it corresponds
to T ~ 0.7%. Thus the amplitude method gives the result that turbulence levels
which vary by a factor of four can all give n = 9 at transition depending on
the value of B. Only experiments on pressure gradient boundary layers with
different turbulence levels can determine if the transition Reynolds number
really varies with T and 8 as given by the amplitude method.

The three -.ethods of transition prediction which have been presented in
this section all use the same amount of computer time, because the eigenvalue

computations are what determine the time. Only if the lateral bandwidth for a
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two-dimensional boundary layer is determined it each Reynolds number does

the amplitude method require substantially more time than the other two
methods. The amplitude method does have the disadvantage that a good

deal must be known about the disturbance source, but this is only a reflection
of the physical situation that transition is dependent on the type, inteansity
and spectrum of the disturbance soufce, and not just on the boundary layer.
The method has been set up so that as information becomes available on the
mechanisms by which Tollmien-Schlichting waves are produced by external dis-
turbances, more realistic liuceraction relations can be easily incorporated
into the computer program., It is hoped that the development of a method which
may for the first time offer the possibility of a rational prediction of trans-
action will encourage the experimental work which is so necessery to arrive at

this long sought goal.

-59-



10.

11.

12.

13.

77-15

REFERENCES

Lord Rayleigh, On the Stability or Instability of Certain Fluid Motions,
I, II, 111, in "Scientific Papers," Vol. 1, pp. 474-484 (1880), Vol. 3,
pp. 17-23 (1887), Vol. 4, pp. 203-209 (1895), Cambridge Univ. Press,
London and New York.

L. Prandtl, Bemerkungen uber die Entstehung der Turbulenz. Z. Angew.
Math. Mech. 1, 431-436 (1921).

W. Tollmien, Uber die Entstehung der Turpulenz. Gesellschaft der Wissen-
schaften, Gottingen, Math.-Naturwiss. Klasse, pp. 21-44 (1929).

H. Schlichting, Zur Entstehung der Turbulenz bei der Plattenstromung,
Gesellschaft der Wissenschaften, G3ttiggen, Math.-Phys. Klasse, 181-208
(1933).

G. B. Schubauer and H. K. Skramstad, Laminar Boundary-Layer Oscillatiomns
and Transition on a Flat Plate, N.A.C.A. Report No. 909 (1948), N.A.C.A.,
Washington, D.C.

M. V. Morkovin, Critical Evaluation of Transition from Laminar to Turbulent
Shear Layers with Emphasis on Hypersonically Travelling Bodies, Technical
Report AFFDL-TR-68-149, Air Force Flight Dvnamics Laboratory, Wright
Patterson Air Force Base (1969), Ohio.

H. Schlichting, "Boundary Layer Theory,'" 6th Ed., McGraw-Hill, New York
(1968) .

J. Pretsch, Die Anfachung instabiler Storungen in einer laminaren
Reibungsschicht, Jahrbuch der deutschen L.ftfahrtforschung (1942). (Also
N.A.C.A. Technical Memo. 1343, 1952.)

C. C. Lirn, On the Stability of Two-Dimensional Para’lel Flows, I, II, III,
Quart. Appl. Math. 3, 117-142, 218-234, 277-301 (1945).

W. Reid, Uniform Asymptotic Approuximation to the Solutions of the Orr-
Sommerfeld Equation, Studies in Applied Mathematics 53, 91-110, 217-224
(1974) .

W. B. Brown, Numerical Calculation of the Stability of Cross Flow Profiles
in Laminar Boundary Layers on a Rotating Disk and in a Swept Back Wing and
an Exact Calculation of cthe Stability of the Blasius Velocity Profile,
Northrop Aircraft Inc., Report NAI 59-5 (1959), Los Angeles, Calif.

E. F. Kurtz, Jr. and S. H. Crandall, Computer-Aided Analysis of Hydrodynamic
Stability, J. Math. Phys. 41, 264-279 (1962).

P. R, Nachtsheim, Stability of Free-Convection Boundary-Layer Flows, N,A.S5.A.
Technical Note D-2089 (1963), N.A.S.A., Washington, D.C.

-60-



14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

77-15

W. B, Brown, Exact Numerical Solution of the Complete Linearized Equations
for the Stability of Compressible Boundary Layers, Northrop Aircraft Inc.,
worair Division Report NOR-62-15 (1962), Los Angeles, Calif.

L. M. Mack, Stability of the Compressible Boundary Layer According to a
Direct Numerical Solution, AGARDograph 97, Part I, pp. 329-362, North
Atlantic Treaty Organization (1965), Neuilly Sur Seine, France.

M. T. Landahl and R. E. Kaplan, Effect of Compliant Walls on Bc.ndary Layer
Stability and Transition, AGARDograph 97, Part I, pp. 363-394, North
Atlantic Treaty Organization (1965), Neuilly Sur Seine, France.

A. R. Wazzan, T. T. Okamura and A. M. O. Smith, Spatial and Temporal Stability
Charts for the Falkner-Skan Boundary-Layer Profiles, McDonnell Douglas Report
No. DAC-67086 (1968), Long Beach, Calif.

H. J. Ooremski, M. V. Morkovin and M. T. Landahl, A Portfolio of Stability
Characteristics of Incompressible Boundary Layers, AGARDograph 134, North
Atlantic Treaty Organization (1969), Neuilly Sur Seine, France.

A. R, Wazzan, T. T. Okamura and A. M, O, Smith, The Stability of Water Flow
over Heated and Cooled Flar Plates, J. Heat Tramsfer 90, 109-114 (1968).

H. Schlichting, Enstehung der Turbulenz, in "Handbuch der Physik' (S. Flugge,
ed.) Vol, VIII/I, pp. 351-450, Springer-Verlag Berlin (1959).

S. F. Shen, Stability of Laminar Flows, ir "Theory of Laminar Flows"
(F. K. Moore, ed.), pp. 719-853, Princeton Univ. Press, New Jersey (1954).

J. T. Stuart, Hydiodynamic Stability, in "Laminar Boundary Layers' (L.
Rosenhead, ed.), pp. 629-670, Oxford Univ. Press, London and New York (1Y63).

W. H. Reid, The Stability of Parallel Flows, in "Basic Developments in Fluid
Dynamics" (M. Holt, ed.), Vol. 1, pp. 249-307, Academic Press, New York (1565).

C. C. Lin, "The Theory of Hydrcdynamic Stability,”" Cambridge Univ. Press,
London and New York (1955).

R. Betchov and W. 0. Criminale, "Stability of Paral‘'el Flows," Academic /’ress,
New York (1967).

A. S. Monin ard A. M. Yaglom, "Statistical Fluid Mechanics: Mechanics of
Turbulence" (J. L. Lumley, ed.), Vol. 1 (Chapter 2), The MIT Press, Cambridge
and London (1971).

F. M. White, '"Viscous Fluid Flow" (Chapter 5), McGraw-Hill, New York (1974).
H. L. Dryden, Transition from Laminar to Turbulent Flow, in '"Turbulent Flows

and 'eat Transfer" (C. €. Lin, ed.), pp. 1-74, Princeton Univ. Press, New
Jers .y (1959).

-61-



29,

30.

32.

33.

37.

38.

39.

40.

41.

42.

43,

44,

772-15

1. Tani, Boundary Layer Transition, in "Annual Review of Fluid Mechanics,”
Vol. 1, pr. 169-196 (136Y).

£. Reshotko, Boundary-Layer Stability and Transition, in "Annual Review
of Fluid Mechanics,"” Vol. 8, pp. 311-349 (1376).

M. V., Morkovin and L. M. Mack, High-Speed Boundary-Layer Stability and
Transition, Recorded Lecture Series, Amevr. Inst. Aeronautics and Astronautics,
New York (1971).

M. Routhier, Stabilité lindaire des écoulements presque paralleles, I and
I1, J. de Mécanique 11, 599-621 (1972), 12, 76-95 (1973).

W. S. Saric and A. H. Nayfeh, Non-Parallel Stability of Boundary-Layer Flows,
Phys. Fluids 18, 945-950 (1575).

H. B. Squire, On the Stability of Three-Dimeasional Disturbances of Viscous
Flow between Parallel Walls. Proc. Roy. Soc. (London) A 142, 621-628 (1933).

L. M. Mack, A Numerical Study of the Temporal Eigervalue Spectrum of the
Blasius Boundary Layer, J. Fluid Mech. 73, 497-520 (1976).

D. Corner, D. J. R. Houston and M. A. S. Ross, Higner Eigenstates in
Boundary-Layer 3tability Theory, J. Fluaid Mech. 77, 81-104 (1976).

G. B. Whitham, "Linear and Nonlinecr Waves " Wilev-Interscience, New York
(1974).

M. T. Landahl, The Wave Mechanics of Breaklown, J. Fluid Mech. 56, 775-802
{1972).

K. Stewartson, Soue Aspects of Nonlinear Stability Theory, Fluid Dynamic
Transactions, Vol. 7, Part 1, pp. 101-128, Polish Academy of Sciences (1975).

L. Lees, Irstability of Laminar Flows and Transition to Turbulence,
Consolidated Aircraft Corp. Repert ZA-7-006 (1952), San Diego, Calif.

M. Gaster, A Note on a Relation between Temporally Increasing and Spatially
Increasing Disturbances in Hydrodynamic Stability, J. Fluid Mech. 14, 222-
224 (1962).

L. H. Thomas, The Stabfility of Plane Poiseuille Flow, Phys. Rev. 91, 780-783
(1953).

A. P. Gallagher and A. M. Mercer, On the Behavior of Small Disturbances in
Plane Couette Flow, I, J. Fluid Mech. i3, 91-100 (1962).

S. A. Orszag, Accurate Solution of th:» Orr-¢& rfeld Stability Equation,
J. Fluid Mech. 50, 689-703 (1971).

-62-



45.

46.

48,

49.

50.

51.

52.

53.

54.

55.

50.

57.

58.

59.

77-15

L. M. Mack, Computation of the Stability of the Laminar Compressible Boundary
Layer, in "Methods in Computational Physics' (B. Alder, ed.), Vol. &4, pp. 247-
299, Academic Press, New York (1965).

J. R. Radbill and E. R. Van Driest, A New Method for Prediction of Stability
of Laminar Boundary Layers, North American Aviation, Inc.. AFOSR Report
66-0702 (1966), Downey, Calif.

L. H. Lee and W. C. Reynolds, On the Approximate and Numerical Solutiom o.
Orr-Sommerfeld Problems, Quart. J. Mech. Appl. Math. 20, 1-22 (1967).

A. Davey, A Simple Numerical Method for Solving Orr-Sommerfeld Problems,
Quart. J. Mech. Appl. Math. 26, 401-411 (1973).

R. E. Kaplan, The Stability of Laminar Incompressible Boundary Layers in
the Presence of Compliant Boundaries, Massachusetts Institute of Technology,
ASRL-TR 116-1 (1964, Cambridge, Mass.

R. E. Bellman and R. E. Kalaba, "Quasilinearization and Boundary Value Problems,"

American Elsevier, New York (1965).

B. Antar, On the Solution of Two-Point Linear Differential Eigenvalue Problems,
J. Comp. Physics 20, 228-219 (1976).

R. Jerdinson and M. Gaster, On the Eigenvalues of the Orr-Sommerfeld Equation,
J. Filuid Mech. 72, 121-133 (1975).

A, M. 0. Smith and N. Gamberoni, Transition, Pressure Gradient and Stability
Theory, Douglas Aircraft Company Report No. ES 26388 (1956), El Segund», Calif.

M. Gaster, On the Effects of Boundary-lLayer Growth on Flow Stability, J.
Fluid Mech. 66, 465-480 (1974, .

H. W. Liepmann, Investigations on Laminar Boundary-Layer Stability and
Transition on Curved Boundaries, M.,A.C.A. Advance Confidential Report 3H30
(Wartime Report W-107) (1943), N.A.C.A., Washingtoa, D.C.

H. W. Liepmann, Investigation of Boundary-Layer Tr-nsition on Concave Walls,
N.A.C.A. Advance Confidential Report +J28 (Wartime Report W-87) (1945)
N.A.C.A., Washington, D.C.

H. W. Bennett, An Experimental Study of, Boundary Layer Transition, Kimberley-
Clark Corp. Report, Neenah, Wisconsin (1953).

H. L. Dryden, Air Flow in the Boundary Layer near a Flat Plate, N.A.C.A.
Report No. 562 (1936), N.A.C.A., Washington, D.C.

F. X. Wortmann, Untersuchung instabiler Grenzschichtschwingungen in einem

Wasserkanal mit der Tellurmethode, in '50 Jahre Grenzschichtforschung,"
pp. 460-470, Friedrich Vieweg, Braunschweig (1955).

-63-



77-15

00. F. N. M. Brown, The Organized Boundary Layer, Proceedings of the Sixth
Midwestern Conference on Fluid Mechanics, pp. 331-349 (1959).

61. C. F. Knapp and P. J. Roache, A Combined Visual and Hot-Wire Anemometer
Investigation of Boundary-Layer Tramsition, AIAA Journal 6, 29-36 (1968).

62. F. R. Hama, J. D. Long and J. C. Hegarty, On Transition from Laminar to
Turbulent Flow, J. Appl. Phvsics Z§, 388- (1257).

63. F. R. Hama and J. Nutant, Detailed Flow-Field Observaticns in the Transition
Process in a Thick Roundary Layer, Proceedings of the 1963 Heat Transfer
and Fluid Machanics Institute, pp. 77-93, Stanford Univ. Press (1963),
Palo Alto, Calif.

64. G. B. Schubauer and P. S. Klebanoff, Contributions on the Mechanics of
Boundary-Layer Transition, N.A.C.A. Technical Note 3489 (1955), N.A.C.A.,
Washington, D.C.

65. P. 5. Klehanoff and K. D. Tidstrom, Evolution of Amplified Waves Leading to
Transition in a Boundary Layer with Zero Pressure Gradient, N.A.S.A. Technical
Note D-195 (1959), N.A.C.A., Washingtom, D.C.

66. P. S. Klebanoff, K. D, Tidstrom and L. M. Sargent, The Three-Dimensional
Nature of Boundary Layer Instability, J. Fluid Mech. 12, 1-34 (1962).

67. J. A. Ross, F. H. Barnes, J. G. Burns and M. A. 5. Ross, The Flat Plate
Boundary Layer. Part 3. Comparisoa of Theory with Experiment, J. Fluid Mech.
43, 819-832 (1970).

68. R. Jordinson, The Flat Plate Boundary Layer. Part 1. Numerical integration
of the Orr-Sommerfeld Equation, J. Fluid Mech 43 801-812 (1970).

69. N. Gregory, J. T. Stuart and W. S. Walker, On the Stability of Three-Dimensional
Boundary Layers with Application to the Flow Due tc 2 Potating Disk, Phil.
Trans. Roy. Sci. London 248(A), 155-199 (1955).

70. J. Laufer and T. Vrebalovich, Stability and Transition of a Supersonic Laminar
Boundary Layer on an Insulated Flat Plate J. Fluid Mech. 9, 257-299 (1960).

71. B. Gebhart, Instability, Transition and Turbulence in Buovancy-Induced Flows,
in "Annual Review of Fluid Mechanies,™ Vol. >, pp. 213-246 (1973).

72. A. Strazisar, J. M. Prakl and E. Reshotko, Experimental Study of the Stability
of Heated Laminar Boundary Layers in Water, Case Western Reserve Univ., Dept.
Flu'd Thermal Aerospace Sci., Report FTAS/TR-75-113 (1975), Cleveland, Ohio.

73. P. S. Klebanoff and K. D. Tidstrom, Mechanism b:* which a Two-Dimensional
Roughness Element Indices Boundary-Layer Tramsition, Phys. Fluids 15, 1173-
1188 (1972).

74. M. Gaster and I. Grant, The Development of a Wave Packet in the Boundary Layer

of a Flat Plate, Aeronautical Research Couvncil, Fluid Motion Sub-Committee,
A.R.C. 36 083, F.M. 4552 (1975).

—64—



75.

76.

77.

78.

79.

80.

81.

82.

83.

85.

86,

87.

88.

77-15

J. M. Kendall, Wind Tunnel Experiments Relating to Supersonic and Hypersonic
Boundary Layer Transition, AIAA Journal 13, 290-299 (1975).

T. Brooke Benjamin, Development of Three-Dimensional Disturbances in an
Unstable Film Flowing Down an Inclined Plane, J. Fluid Mech. 10, 401-409
(1961).

W. O. Criminale and L. S. G. Kovdsznay, The Growth of Localized Disturbances
in a Laminar Boundary Layer, J. Fluid Mech. 14, 59-80 (1962).

M. Gaster, The Development of Three-Dimensional Wave Packets in a Boundary
Layer, J. Fluid Mech. 32, 173-184 (1968).

M. Gaster and A. Davev, The Deveiopment of Three-Dimensional Wave-Packets
in Unbounded Parallel Fiws, J. Fluid Mech. 32, 801-808 (1968).

H. Schlichting, Amplitudenvertellung und Energiebilanz der kleinen Storungen
bei der Plattenstromung, Gesellschift der Wissenschaften, Gottingen, Math.-
Phys. Klasse, Vol. 1, pp. 47-78 (1935).

J. L. Van Ingen, A Suggested Semi-Empirical Method for the Calculation of the
Boundary Layer Transition Region, Univ. of Technology, Dept. of Aero. Eng.
Report VIH-74, Delft, Holland (1956).

A. M. 0. Smith, Rapid Laminar Boundary-Layer Calculations by Piecewise
Application of Similar Solutiomns, J. Aero. Sci. 23, 901-912 (1956).

N. A, Jaffe, T. T. Okamura and A. M. 0. Smith, Determination of Spatial
Amplification Factors and Their Application to Tramsition, AJAA Journal 8,
301-308 (1970). :

J. L. Van Ingen, Transition, Pressure Gradient, Suction, Separation and
Stability Theory, Low-Speed Boundary-Layer Transition Workshop: 1I, Rand Corp.,
Santa Monica (1976).

L. M. Mack, On the Effect of Freestream Turbulence on Boundary-Layer
Transition, Low-Speed Boundary-Layer Transition Workshop: II, Rand Cc
Santa Monica, Calif. (1976).

A. A, Hall and G. S. Hislop, Experiments on the Transition of the Laminar
Boundary Layer on a "lat Plate, Aero. Res. Comm. Reports and Memoranda 1843
(1938).

E. A. Wright and G. W. Bailey, Laminar Frictional Resistance with Pressure
Gradient, J. Aero. Sci. 6, 485-488 (1939).

D. J. Hall and J. C. Gibbings, Influence of Stream Turbulence and Pressure
Gradient upon Boundary Layer Transition, J. Mech. Eng. Sci. 14, 134-146 (1972).

-65-



77-15

89. L. M. Mack, A Numerical Method for the Prediction of High-Speed Boundary-
Layer Transition Using Linear Theory, Proceedings of Conf. on Aerodynamic
Analyses Requiring Advanced Computers, NASA SP-347, pp. 101-124 (1975).
NASA, Washington, D. C.

90. J. Stermberg, A Theory for the Viscous Sublayer of a Turbulent Flow,
J. Fluid Mech. 13, 241-271 (1962).

91. L. M. Mack, Linear Stability Theory and the Problem of Supersonic Boundary-
Layer Tramsition, AIAA Journal 13, 278-289 (1975).

92. G. K. Batchelor, Pressure Fluctuations in Isotropic Turbulence, Proc.
Cambridge Phil. Soc. 47, 359-374 (1951).

93. T. von Kdrmdn, Progress in the Statistical Theory of Turbulence, J. Marine
Research 7, 252-264 (1948).

-66-



Ieer.
0 0.1200
1 0.09421
2 0.09918
3 0.09964
4 0.69964
5 0.09964

Table I. Operation of Eigenvalue Search Procedure
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Spatial
aixlo3 € h
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B=0, R =1600

h W w, X 10°
.269 0.0213 1.124
.292 0.0350 2.499
.310 0.0498 1.071
.321 0.0573 -1.345

g = -0.10, = 700
2 ? 0.0196 2.060
.337 0.0437 5.865
.37%¢ 0.0726 3.532
.435 0.1081 -3.559

g =-0,1988, R = 300
.268 0.0104 5.645
413 0.0782 22.90
.459 0.1372 16.78
.527 0.2103 -11.17

Temporal
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0.311
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0.280
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£
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v R Fox 10% I 7, x 102 @ X 10°
0° 1600 0.30 0° -3.82 -3.82
45° 2263 0.15 0° -3.17 -3.17
10° -3.12 -3.07
30° -3.32 -2.88
459 -3.82 «2.70
60° 3200 0.075 0° -2.46 -2.46
10° -2.42 -2.39
30° -2.59 -2.24
45° -2.98 -2.11
60° -3.82 -1.91
75° 6182 0.0201 0° -1.37 -1.37
10° -1.36 -1.34
30° -1.49 -1.29
45° -1.75 -1.24
60° -2.32 -1.16
75° -3.82 -0.99

Table IV. Spatial Amplification Rates of Oblique Waves in the
Flat-Plate Boundary Layer for Different Values of 7.
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frequency-response curves for Falkner-Skan
boundary layers
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Figure 5. Direction of group velocity for oblique waves
of constant wave number in flat-plate
boundary layer, Rel/2 = 1600
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Figure 6. Comparison of theory with Schubauer-Skramstad
measurements (?) of the growth of six
constant-frequency waves in flat-plate
boundary layer
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Figure 7. Effect of freestream turbulence on the transition Reynolds num-

ber of the flat-plate boundary layer:
;s & Wright and Bailey(87)
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Figure 9. Distvrban-e amplitude growth in flat-plate boundary layer
according tc amplitude meth~d for .everal freestream tur-
bulence levels, UjA/v = 4 ~ 10
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Effect of pressure-grad.ent parameter on the transition Rev-
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